Self-consistent field study of the alignment by an electric field of a cylindrical phase of block copolymer.
نویسندگان
چکیده
Self-consistent field theory is applied to a film of cylindrical-forming block copolymer subject to a surface field which tends to align the cylinders parallel to electrical plates, and to an external electric field tending to align them perpendicular to the plates. The Maxwell equations and self-consistent field equations are solved exactly, numerically, in real space. By comparing the free energies of different configurations, we show that for weak surface fields, the phase of cylinders parallel to the plates makes a direct transition to a phase in which the cylinders are aligned with the field throughout the sample. For stronger surface fields, there is an intermediate phase in which cylinders in the interior of the film, aligned with the field, terminate near the plates. For surface fields which favor the minority block, there is a boundary layer of hexagonal symmetry at the plates in which the monomers favored by the surface field occupy a larger area than they would if the cylinders extended to the surface.
منابع مشابه
Electric-field-induced alignment of block copolymer/nanoparticle blends.
External electric fields readily align birefringent block-copolymer mesophases. In this study the effect of gold nanoparticles on the electric-field-induced alignment of a lamellae-forming polystyrene-block-poly(2-vinylpyridine) copolymer is assessed. Nanoparticles are homogeneously dispersed in the styrenic phase and promote the quantitative alignment of lamellar domains by substantially lower...
متن کاملSelf-consistent field theory simulations of block copolymer assembly on a sphere.
Recently there has been a strong interest in the area of defect formation in ordered structures on curved surfaces. Here we explore the closely related topic of self-assembly in thin block copolymer melt films confined to the surface of a sphere. Our study is based on a self-consistent field theory (SCFT) model of block copolymers that is numerically simulated by spectral collocation with a sph...
متن کاملInfluence of initial order on the microscopic mechanism of electric field induced alignment of block copolymer microdomains.
We investigate the mechanism of microdomain orientation in concentrated block copolymer solutions exposed to a dc electric field by in situ synchrotron small-angle X-ray scattering (SAXS). As a model system, we use concentrated solutions of a lamellar polystyrene-b-polyisoprene block copolymer in toluene. We find that both the microscopic mechanism of reorientation and the kinetics of the proce...
متن کاملElectric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films
An electric field induced sphere-to-cylinder transition in thin films of asymmetric polystyrene-b-poly(methyl methacrylate) diblock copolymers was observed. In the absence of an applied electric field, thin films of the asymmetric diblock copolymer consisted of layers of spherical microdomains with poor in-plane long-range ordering. Under a ∼40V/μm applied electric field, hexagonally packed cyl...
متن کاملMicelle shape transitions in block copolymer/homopolymer blends: comparison of self-consistent field theory with experiment.
Diblock copolymers blended with homopolymer may self-assemble into spherical, cylindrical, or lamellar aggregates. Transitions between these structures may be driven by varying the homopolymer diblock molecular weight or composition. Using self-consistent field theory (SCFT), we reproduce these effects. Our results are compared to x-ray scattering and transmission electron microscopy measuremen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 125 3 شماره
صفحات -
تاریخ انتشار 2006